Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
1.
Ann Hematol ; 102(6): 1307-1322, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2303196

ABSTRACT

The coagulation, fibrinolytic, anticoagulation, and complement systems are in delicate balance with the vessel wall endothelium ensuring appropriate hemostasis. Coagulopathy in coronavirus disease 2019 (COVID-19) is not a simple disorder of one hemostatic component but a complicated process affecting most of the hemostasis system. COVID-19 disturbs the balance between the procoagulant systems and the regulatory mechanisms. Here, we investigate the effect of COVID-19 on key hemostatic components, including platelets, endothelial cells, coagulation factors, fibrinolytic system, anticoagulant protein system, and complement system, to improve our understanding of the pathophysiological processes underlying COVID-19 coagulopathy based on evidence.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Hemostatics , Humans , Hemostatics/pharmacology , Endothelial Cells/metabolism , Hemostasis , Blood Coagulation Factors/metabolism , Blood Platelets/metabolism , Endothelium, Vascular/metabolism , Fibrinolysis
2.
Clin Sci (Lond) ; 137(7): 543-559, 2023 04 13.
Article in English | MEDLINE | ID: covidwho-2285529

ABSTRACT

Poor disease outcomes and lethality are directly related to endothelial dysfunction in betacoronavirus infections. Here, we investigated the mechanisms underlying the vascular dysfunction caused by the betacoronaviruses MHV-3 and SARS-CoV-2. Wild-type C57BL/6 (WT) and knockout mice for inducible nitric oxide synthase (iNOS-/-) or TNF receptor 1 (TNFR1-/-) were infected with MHV-3, and K18-hACE2 transgenic mice expressing human ACE2 were infected with SARS-CoV-2. Isometric tension was used to evaluate vascular function. Protein expression was determined by immunofluorescence. Tail-cuff plethysmography and Doppler were used to assess blood pressure and flow, respectively. Nitric oxide (NO) was quantified with the DAF probe. ELISA was used to assess cytokine production. Survival curves were estimated using Kaplan-Meier. MHV-3 infection reduced aortic and vena cava contractility, arterial blood pressure, and blood flow, resulting in death. Resistance mesenteric arteries showed increased contractility. The contractility of the aorta was normalized by removing the endothelium, inhibiting iNOS, genetically deleting iNOS, or scavenging NO. In the aorta, iNOS and phospho-NF-kB p65 subunit expression was enhanced, along with basal NO production. TNF production was increased in plasma and vascular tissue. Genetic deletion of TNFR1 prevented vascular changes triggered by MHV-3, and death. Basal NO production and iNOS expression were also increased by SARS-CoV-2. In conclusion, betacoronavirus induces an endothelium-dependent decrease in contractility in macro-arteries and veins, leading to circulatory failure and death via TNF/iNOS/NO. These data highlight the key role of the vascular endothelium and TNF in the pathogenesis and lethality of coronaviruses.


Subject(s)
COVID-19 , Shock , Mice , Humans , Animals , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase/metabolism , Receptors, Tumor Necrosis Factor, Type I/genetics , Receptors, Tumor Necrosis Factor, Type I/metabolism , SARS-CoV-2/metabolism , Mice, Inbred C57BL , Endothelium, Vascular/metabolism , Nitric Oxide/metabolism , Mice, Transgenic , Mesenteric Arteries/metabolism
3.
Physiol Rep ; 10(24): e15552, 2022 12.
Article in English | MEDLINE | ID: covidwho-2204042

ABSTRACT

SARS-CoV-2 infection is known to instigate a range of physiologic perturbations, including vascular dysfunction. However, little work has concluded how long these effects may last, especially among young adults with mild symptoms. To determine potential recovery from acute vascular dysfunction in young adults (8 M/8F, 21 ± 1 yr, 23.5 ± 3.1 kg⋅m-2 ), we longitudinally tracked brachial artery flow-mediated dilation (FMD) and reactive hyperemia (RH) in the arm and hyperemic response to passive limb movement (PLM) in the leg, with Doppler ultrasound, as well as circulating biomarkers of inflammation (interleukin-6, C-reactive protein), oxidative stress (thiobarbituric acid reactive substances, protein carbonyl), antioxidant capacity (superoxide dismutase), and nitric oxide bioavailability (nitrite) monthly for a 6-month period post-SARS-CoV-2 infection. FMD, as a marker of macrovascular function, improved from month 1 (3.06 ± 1.39%) to month 6 (6.60 ± 2.07%; p < 0.001). FMD/Shear improved from month one (0.10 ± 0.06 AU) to month six (0.18 ± 0.70 AU; p = 0.002). RH in the arm and PLM in the leg, as markers of microvascular function, did not change during the 6 months (p > 0.05). Circulating markers of inflammation, oxidative stress, antioxidant capacity, and nitric oxide bioavailability did not change during the 6 months (p > 0.05). Together, these results suggest some improvements in macrovascular, but not microvascular function, over 6 months following SARS-CoV-2 infection. The data also suggest persistent ramifications for cardiovascular health among those recovering from mild illness and among young, otherwise healthy adults with SARS-CoV-2.


Subject(s)
COVID-19 , Hyperemia , Humans , Young Adult , Antioxidants , Nitric Oxide/metabolism , Vasodilation/physiology , SARS-CoV-2/metabolism , Brachial Artery/diagnostic imaging , Brachial Artery/physiology , Inflammation/metabolism , Endothelium, Vascular/metabolism , Regional Blood Flow/physiology
4.
Molecules ; 27(22)2022 Nov 16.
Article in English | MEDLINE | ID: covidwho-2115975

ABSTRACT

Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.


Subject(s)
COVID-19 , Nitric Oxide , Humans , Nitric Oxide/metabolism , Hemoglobins/metabolism , Endothelium, Vascular/metabolism
7.
Int J Mol Sci ; 23(15)2022 Jul 27.
Article in English | MEDLINE | ID: covidwho-1994078

ABSTRACT

The vascular endothelium has several important functions, including hemostasis. The homeostasis of hemostasis is based on a fine balance between procoagulant and anticoagulant proteins and between fibrinolytic and antifibrinolytic ones. Coagulopathies are characterized by a mutation-induced alteration of the function of certain coagulation factors or by a disturbed balance between the mechanisms responsible for regulating coagulation. Homeostatic therapies consist in replacement and nonreplacement treatments or in the administration of antifibrinolytic agents. Rebalancing products reestablish hemostasis by inhibiting natural anticoagulant pathways. These agents include monoclonal antibodies, such as concizumab and marstacimab, which target the tissue factor pathway inhibitor; interfering RNA therapies, such as fitusiran, which targets antithrombin III; and protease inhibitors, such as serpinPC, which targets active protein C. In cases of thrombophilia (deficiency of protein C, protein S, or factor V Leiden), treatment may consist in direct oral anticoagulants, replacement therapy (plasma or recombinant ADAMTS13) in cases of a congenital deficiency of ADAMTS13, or immunomodulators (prednisone) if the thrombophilia is autoimmune. Monoclonal-antibody-based anti-vWF immunotherapy (caplacizumab) is used in the context of severe thrombophilia, regardless of the cause of the disorder. In cases of disseminated intravascular coagulation, the treatment of choice consists in administration of antifibrinolytics, all-trans-retinoic acid, and recombinant soluble human thrombomodulin.


Subject(s)
Factor V/metabolism , Thrombophilia , von Willebrand Factor , Anticoagulants , Endothelium, Vascular/metabolism , Factor VIII/genetics , Factor VIII/therapeutic use , Homeostasis , Humans , Protein C/therapeutic use , Thrombophilia/genetics , von Willebrand Factor/metabolism
9.
PLoS One ; 17(5): e0268296, 2022.
Article in English | MEDLINE | ID: covidwho-1910641

ABSTRACT

Severe coronavirus disease-19 (COVID-19) is characterized by vascular inflammation and thrombosis. We and others have proposed that the inflammatory response to coronavirus infection activates endothelial cells, leading to endothelial release of pro-thrombotic proteins. These mediators can trigger obstruction of the pulmonary microvasculature, leading to worsening oxygenation, acute respiratory distress syndrome, and death. In the current study, we tested the hypothesis that higher levels of biomarkers released from endothelial cells are associated with worse oxygenation in patients with COVID-19. We studied 83 participants aged 18-84 years with COVID-19 admitted to a single center. The severity of pulmonary disease was classified by oxygen requirement, including no oxygen requirement, low-flow oxygen, high-flow nasal cannula oxygen, mechanical ventilation, and death. We measured plasma levels of two proteins released by activated endothelial cells, von Willebrand Factor (VWF) antigen and soluble P-Selectin (sP-Sel), and a biomarker of systemic thrombosis, D-dimer. Additionally, we explored the association of endothelial biomarker levels with the levels of pro-inflammatory cytokine and chemokines, and vascular inflammation biomarkers. We found that levels of VWF, sP-sel, and D-dimer were increased in individuals with more severe COVID-19 pulmonary disease. Biomarkers of endothelial cell activation were also correlated with proinflammatory cytokines and chemokines. Taken together, our data demonstrate increased levels of VWF and sP-selectin are linked to the severity of lung disease in COVID-19 and correlated with biomarkers of inflammation and vascular inflammation. Our data support the concept that COVID-19 is a vascular disease which involves endothelial injury in the context of an inflammatory state.


Subject(s)
COVID-19 , Thrombosis , Biomarkers , Chemokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Inflammation/metabolism , Oxygen/metabolism , Thrombosis/metabolism , von Willebrand Factor/metabolism
10.
Int J Mol Sci ; 23(11)2022 May 31.
Article in English | MEDLINE | ID: covidwho-1869643

ABSTRACT

The endothelium has a fundamental role in the cardiovascular complications of coronavirus disease 2019 (COVID-19). Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particularly affects endothelial cells. The virus binds to the angiotensin-converting enzyme 2 (ACE-2) receptor (present on type 2 alveolar cells, bronchial epithelial cells, and endothelial cells), and induces a cytokine storm. The cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 have particular effects on endothelial cells-leading to endothelial dysfunction, endothelial cell death, changes in tight junctions, and vascular hyperpermeability. Under normal conditions, apoptotic endothelial cells are removed into the bloodstream. During COVID-19, however, endothelial cells are detached more rapidly, and do not regenerate as effectively as usual. The loss of the endothelium on the luminal surface abolishes all of the vascular responses mediated by the endothelium and nitric oxide production in particular, which results in greater contractility. Moreover, circulating endothelial cells infected with SARS-CoV-2 act as vectors for viral dissemination by forming clusters that migrate into the circulation and reach distant organs. The cell clusters and the endothelial dysfunction might contribute to the various thromboembolic pathologies observed in COVID-19 by inducing the formation of intravascular microthrombi, as well as by triggering disseminated intravascular coagulation. Here, we review the contributions of endotheliopathy and endothelial-cell-derived extracellular vesicles to the pathogenesis of COVID-19, and discuss therapeutic strategies that target the endothelium in patients with COVID-19.


Subject(s)
COVID-19 , Vascular Diseases , COVID-19/complications , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , SARS-CoV-2 , Vascular Diseases/metabolism
11.
Am J Physiol Renal Physiol ; 322(3): F309-F321, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1799210

ABSTRACT

Substantial evidence has supported the role of endothelial cell (EC) activation and dysfunction in the development of hypertension, chronic kidney disease (CKD), and lupus nephritis (LN). In both humans and experimental models of hypertension, CKD, and LN, ECs become activated and release potent mediators of inflammation including cytokines, chemokines, and reactive oxygen species that cause EC dysfunction, tissue damage, and fibrosis. Factors that activate the endothelium include inflammatory cytokines, mechanical stretch, and pathological shear stress. These signals can activate the endothelium to promote upregulation of adhesion molecules, such as intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, which promote leukocyte adhesion and migration to the activated endothelium. More importantly, it is now recognized that some of these signals may in turn promote endothelial antigen presentation through major histocompatibility complex II. In this review, we will consider in-depth mechanisms of endothelial activation and the novel mechanism of endothelial antigen presentation. Moreover, we will discuss these proinflammatory events in renal pathologies and consider possible new therapeutic approaches to limit the untoward effects of endothelial inflammation in hypertension, CKD, and LN.


Subject(s)
Hypertension , Lupus Nephritis , Renal Insufficiency, Chronic , Cytokines/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Female , Humans , Hypertension/metabolism , Inflammation/metabolism , Intercellular Adhesion Molecule-1/metabolism , Lupus Nephritis/metabolism , Male , Renal Insufficiency, Chronic/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
12.
Physiol Rep ; 10(8): e15271, 2022 04.
Article in English | MEDLINE | ID: covidwho-1791646

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a major clinical problem without available therapies. Known risks for ARDS include severe sepsis, SARS-CoV-2, gram-negative bacteria, trauma, pancreatitis, and blood transfusion. During ARDS, blood fluids and inflammatory cells enter the alveoli, preventing oxygen exchange from air into blood vessels. Reduced pulmonary endothelial barrier function, resulting in leakage of plasma from blood vessels, is one of the major determinants in ARDS. It is, however, unknown why systemic inflammation particularly targets the pulmonary endothelium, as endothelial cells (ECs) line all vessels in the vascular system of the body. In this study, we examined ECs of pulmonary, umbilical, renal, pancreatic, and cardiac origin for upregulation of adhesion molecules, ability to facilitate neutrophil (PMN) trans-endothelial migration (TEM) and for endothelial barrier function, in response to the gram-negative bacterial endotoxin LPS. Interestingly, we found that upon LPS stimulation, pulmonary ECs showed increased levels of adhesion molecules, facilitated more PMN-TEM and significantly perturbed the endothelial barrier, compared to other types of ECs. These observations could partly be explained by a higher expression of the adhesion molecule ICAM-1 on the pulmonary endothelial surface compared to other ECs. Moreover, we identified an increased expression of Cadherin-13 in pulmonary ECs, for which we demonstrated that it aids PMN-TEM in pulmonary ECs stimulated with LPS. We conclude that pulmonary ECs are uniquely sensitive to LPS, and intrinsically different, compared to ECs from other vascular beds. This may add to our understanding of the development of ARDS upon systemic inflammation.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Cell Adhesion Molecules/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Humans , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , SARS-CoV-2
13.
Front Immunol ; 13: 776861, 2022.
Article in English | MEDLINE | ID: covidwho-1701723

ABSTRACT

Cardiovascular dysfunction and disease are common and frequently fatal complications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Indeed, from early on during the SARS-CoV-2 virus pandemic it was recognized that cardiac complications may occur, even in patients with no underlying cardiac disorders, as part of the acute infection, and that these were associated with more severe disease and increased morbidity and mortality. The most common cardiac complication is acute cardiac injury, defined by significant elevation of cardiac troponins. The potential mechanisms of cardiovascular complications include direct viral myocardial injury, systemic inflammation induced by the virus, sepsis, arrhythmia, myocardial oxygen supply-demand mismatch, electrolyte abnormalities, and hypercoagulability. This review is focused on the prevalence, risk factors and clinical course of COVID-19-related myocardial injury, as well as on current data with regard to disease pathogenesis, specifically the interaction of platelets with the vascular endothelium. The latter section includes consideration of the role of SARS-CoV-2 proteins in triggering development of a generalized endotheliitis that, in turn, drives intense activation of platelets. Most prominently, SARS-CoV-2-induced endotheliitis involves interaction of the viral spike protein with endothelial angiotensin-converting enzyme 2 (ACE2) together with alternative mechanisms that involve the nucleocapsid and viroporin. In addition, the mechanisms by which activated platelets intensify endothelial activation and dysfunction, seemingly driven by release of the platelet-derived calcium-binding proteins, SA100A8 and SA100A9, are described. These events create a SARS-CoV-2-driven cycle of intravascular inflammation and coagulation, which contributes significantly to a poor clinical outcome in patients with severe disease.


Subject(s)
Blood Platelets/metabolism , COVID-19/pathology , Cardiovascular Diseases/pathology , Endothelium, Vascular/metabolism , Platelet Activation/immunology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/mortality , Cardiovascular Diseases/virology , Coronavirus Nucleocapsid Proteins/immunology , Endothelial Cells/metabolism , Humans , Myocardium/pathology , Phosphoproteins/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
14.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655773

ABSTRACT

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Subject(s)
Endothelial Cells/virology , Extracellular Space/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , HEK293 Cells , Humans , Protein Binding
15.
Brain Res ; 1780: 147804, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1654119

ABSTRACT

The socio-economic impact of diseases associated with cognitive impairment is increasing. According to the Alzheimer's Society there are over 850,000 people with dementia in the UK, costing the UK £26 billion in 2013. Therefore, research into treatment of those conditions is vital. Research into the cerebral endothelial glycocalyx (CeGC) could offer effective treatments. The CeGC, consisting of proteoglycans, glycoproteins and glycolipids, is a dynamic structure covering the luminal side oftheendothelial cells of capillaries throughout the body. The CeGC is thicker in cerebral micro vessels, suggesting specialisation for its function as part of the blood-brain barrier (BBB). Recent research evidences that the CeGC is vital in protecting fragile parenchymal tissue and effective functioning of the BBB, as one particularly important CeGC function is to act as a protective barrier and permeability regulator. CeGC degradation is one of the factors which can lead to an increase in BBB permeability. It occurs naturally in aging, nevertheless, premature degradationhas beenevidencedin multipleconditions linked to cognitive impairment, such as inflammation,brain edema, cerebral malaria, Alzheimer's and recently Covid-19. Increasing knowledge of the mechanisms of CeGC damage has led to research into preventative techniques showing that CeGC is a possible diagnostic marker and a therapeutic target. However, the evidence is relatively new, inconsistent and demonstrated mainly in experimental models. This review evaluates the current knowledge of the CeGC, its structure, functions, damage and repair mechanisms and the impact of its degeneration on cognitive impairment in multiple conditions, highlighting the CeGC as a possible diagnostic marker and a potential target for therapeutic treatment.


Subject(s)
Blood-Brain Barrier/metabolism , Cognitive Dysfunction/metabolism , Endothelium, Vascular/metabolism , Glycocalyx/metabolism , Microvessels/metabolism , Blood-Brain Barrier/pathology , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Endothelium, Vascular/pathology , Glycocalyx/pathology , Humans , Microvessels/pathology
16.
EBioMedicine ; 75: 103812, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1639102

ABSTRACT

BACKGROUND: Thromboembolism is a life-threatening manifestation of coronavirus disease 2019 (COVID-19). We investigated a dysfunctional phenotype of vascular endothelial cells in the lungs during COVID-19. METHODS: We obtained the lung specimens from the patients who died of COVID-19. The phenotype of endothelial cells and immune cells was examined by flow cytometry and immunohistochemistry (IHC) analysis. We tested the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the endothelium using IHC and electron microscopy. FINDINGS: The autopsy lungs of COVID-19 patients exhibited severe coagulation abnormalities, immune cell infiltration, and platelet activation. Pulmonary endothelial cells of COVID-19 patients showed increased expression of procoagulant von Willebrand factor (VWF) and decreased expression of anticoagulants thrombomodulin and endothelial protein C receptor (EPCR). In the autopsy lungs of COVID-19 patients, the number of macrophages, monocytes, and T cells was increased, showing an activated phenotype. Despite increased immune cells, adhesion molecules such as ICAM-1, VCAM-1, E-selectin, and P-selectin were downregulated in pulmonary endothelial cells of COVID-19 patients. Notably, decreased thrombomodulin expression in endothelial cells was associated with increased immune cell infiltration in the COVID-19 patient lungs. There were no SARS-CoV-2 particles detected in the lung endothelium of COVID-19 patients despite their dysfunctional phenotype. Meanwhile, the autopsy lungs of COVID-19 patients showed SARS-CoV-2 virions in damaged alveolar epithelium and evidence of hypoxic injury. INTERPRETATION: Pulmonary endothelial cells become dysfunctional during COVID-19, showing a loss of thrombomodulin expression related to severe thrombosis and infiltration, and endothelial cell dysfunction might be caused by a pathologic condition in COVID-19 patient lungs rather than a direct infection with SARS-CoV-2. FUNDING: This work was supported by the Johns Hopkins University, the American Heart Association, and the National Institutes of Health.


Subject(s)
Blood Coagulation Disorders/metabolism , COVID-19/metabolism , Down-Regulation , Endothelium, Vascular/metabolism , Hypoxia/metabolism , Lung/metabolism , SARS-CoV-2/metabolism , Thrombomodulin/biosynthesis , Aged , Aged, 80 and over , Blood Coagulation Disorders/pathology , COVID-19/pathology , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Endothelium, Vascular/ultrastructure , Female , Humans , Hypoxia/pathology , Lung/ultrastructure , Male , Middle Aged
17.
Ultrasound Obstet Gynecol ; 59(2): 202-208, 2022 02.
Article in English | MEDLINE | ID: covidwho-1611359

ABSTRACT

OBJECTIVE: In addition to the lungs, the placenta and the endothelium can be affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble fms-like tyrosine kinase-1 (sFlt-1) and placental growth factor (PlGF) are markers of endothelial dysfunction and could potentially serve as predictors of severe coronavirus disease 2019 (COVID-19). We aimed to investigate the association of serum concentrations of sFlt-1 and PlGF with the severity of COVID-19 in pregnancy. METHODS: This was a prospective cohort study carried out in a tertiary care hospital in Mexico City, Mexico. Symptomatic pregnant women with a positive reverse-transcription quantitative polymerase chain reaction test for SARS-CoV-2 infection who fulfilled the criteria for hospitalization were included. The primary outcome was severe pneumonia due to COVID-19. Secondary outcomes were intensive care unit (ICU) admission, viral sepsis and maternal death. sFlt-1 levels were expressed as multiples of the median (MoM). The association between sFlt-1 and each adverse outcome was explored by logistic regression analysis, adjusted for gestational age for outcomes occurring in more than five patients, and the predictive performance was assessed by receiver-operating-characteristics-curve analysis. RESULTS: Among 113 pregnant women with COVID-19, higher sFlt-1 MoM was associated with an increased probability of severe pneumonia (adjusted odds ratio (aOR), 1.817 (95% CI, 1.365-2.418)), ICU admission (aOR, 2.195 (95% CI, 1.582-3.047)), viral sepsis (aOR, 2.318 (95% CI, 1.407-3.820)) and maternal death (unadjusted OR, 5.504 (95% CI, 1.079-28.076)). At a 10% false-positive rate, sFlt-1 MoM had detection rates of 45.2%, 66.7%, 83.3% and 100% for severe COVID-19 pneumonia, ICU admission, viral sepsis and maternal death, respectively. PlGF values were similar between women with severe and those with non-severe COVID-19 pneumonia. CONCLUSION: sFlt-1 MoM is higher in pregnant women with severe COVID-19 and has the capability to predict serious adverse pregnancy events, such as severe pneumonia, ICU admission, viral sepsis and maternal death. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
COVID-19 , Intensive Care Units/statistics & numerical data , Pneumonia, Viral , Pregnancy Complications, Infectious , Vascular Endothelial Growth Factor Receptor-1/blood , Adult , COVID-19/blood , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Gestational Age , Humans , Mexico/epidemiology , Mortality , Placenta/metabolism , Placenta/physiopathology , Placenta Growth Factor/blood , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Pneumonia, Viral/etiology , Pregnancy , Pregnancy Complications, Infectious/blood , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/therapy , SARS-CoV-2/isolation & purification , Severity of Illness Index
18.
FASEB J ; 36(1): e22052, 2022 01.
Article in English | MEDLINE | ID: covidwho-1550589

ABSTRACT

The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.


Subject(s)
COVID-19 , Endothelial Cells , Endothelium, Vascular , Glycocalyx , SARS-CoV-2/metabolism , COVID-19/metabolism , COVID-19/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Glycocalyx/metabolism , Glycocalyx/pathology , Glycocalyx/virology , Humans , Oxidative Stress , Sulfotransferases/metabolism
19.
Int J Mol Sci ; 22(22)2021 Nov 15.
Article in English | MEDLINE | ID: covidwho-1524023

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease 2019 [COVID-19]) pandemic has raged for almost two years, with few signs of a sustained abatement or remission [...].


Subject(s)
COVID-19/pathology , Cardiovascular Diseases/complications , Diabetes Complications/pathology , COVID-19/complications , COVID-19/virology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Humans , Lipoproteins, LDL/metabolism , SARS-CoV-2/isolation & purification
20.
Int J Mol Sci ; 22(21)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512382

ABSTRACT

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a global pandemic with a great impact on social and economic activities, as well as public health. In most patients, the symptoms of COVID-19 are a high-grade fever and a dry cough, and spontaneously resolve within ten days. However, in severe cases, COVID-19 leads to atypical bilateral interstitial pneumonia, acute respiratory distress syndrome, and systemic thromboembolism, resulting in multiple organ failure with high mortality and morbidity. SARS-CoV-2 has immune evasion mechanisms, including inhibition of interferon signaling and suppression of T cell and B cell responses. SARS-CoV-2 infection directly and indirectly causes dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction, which interact with each other and are exacerbated by cardiovascular risk factors. In this review, we summarize current knowledge on the pathogenic basis of thromboinflammation and endothelial injury in COVID-19. We highlight the distinct contributions of dysregulated immune responses, platelet hyperactivation, and endothelial dysfunction to the pathogenesis of COVID-19. In addition, we discuss potential therapeutic strategies targeting these mechanisms.


Subject(s)
COVID-19/pathology , Endothelium, Vascular/physiopathology , Thrombosis/etiology , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , Blood Coagulation , COVID-19/complications , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Immunity, Innate , Platelet Activation , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL